Role played by periaqueductal gray neurons in parasympathetically mediated fear bradycardia in conscious rats

نویسندگان

  • Satoshi Koba
  • Ryo Inoue
  • Tatsuo Watanabe
چکیده

Freezing, a characteristic pattern of defensive behavior elicited by fear, is associated with a decrease in the heart rate. Central mechanisms underlying fear bradycardia are poorly understood. The periaqueductal gray (PAG) in the midbrain is known to contribute to autonomic cardiovascular adjustments associated with various emotional behaviors observed during active or passive defense reactions. The purpose of this study was to elucidate the role played by PAG neurons in eliciting fear bradycardia. White noise sound (WNS) exposure at 90 dB induced freezing behavior and elicited bradycardia in conscious rats. The WNS exposure-elicited bradycardia was mediated parasympathetically because intravenous administration of atropine abolished the bradycardia (P < 0.05). Moreover, WNS exposure-elicited bradycardia was mediated by neuronal activation of the lateral/ventrolateral PAG (l/vlPAG) because bilateral microinjection of muscimol, a GABAA agonist, into the l/vlPAG significantly suppressed the bradycardia. It is noted that muscimol microinjected bilaterally into the dorsolateral PAG had no effect on WNS exposure-elicited bradycardia. Furthermore, retrograde neuronal tracing experiments combined with immunohistochemistry demonstrated that a number of l/vlPAG neurons that send direct projections to the nucleus ambiguus (NA) in the medulla, a major origin of parasympathetic preganglionic neurons to the heart, were activated by WNS exposure. Based on these findings, we propose that the l/vlPAG-NA monosynaptic pathway transmits fear-driven central signals, which elicit bradycardia through parasympathetic outflow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fear bradycardia and activation of the human periaqueductal grey

Animal models of predator defense distinguish qualitatively different behavioral modes that are activated at increasing levels of predation threat. A defense mode observed at intermediate threat levels is freezing: a cessation of locomotion that is characterized by a parasympathetically dominated autonomic nervous system response that causes heart rate deceleration, or fear bradycardia. Studies...

متن کامل

Pii: S0306-4522(96)00560-x

–Immunohistochemical detection of Fos was used to determine which regions of the periaqueductal gray are activated during conditioned fear to a context in the rat. More specifically, the aim of the study was to test the role of its lateral and ventrolateral columns in freezing behaviour during fear. Conditioned fear was evoked by re-exposing rats to the same footshock chamber in which they had ...

متن کامل

Role of amygdala in conditioned and unconditioned fear generated in the periaqueductal gray.

The amygdala and ventral portion of the periaqueductal gray (vPAG) are crucial for the expression of the contextual freezing behavior. However, it is still unclear whether the amygdala also plays a role in defensive behaviors induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into dPAG for determination of the th...

متن کامل

Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by γ-aminobutyric acid and 5-hydroxytryptamine ...

متن کامل

Hemodynamic responses and c-Fos changes associated with hypotensive hemorrhage: standardizing a protocol for severe hemorrhage in conscious rats.

The central mechanisms underlying the transition from compensation to decompensation during severe hemorrhage (HEM) are poorly understood. Furthermore, a lack of consistency in HEM protocols exists in the current literature. This study assessed the cardiovascular response and Fos-like immunoreactivity (FLI) in specific brain regions following severe HEM at three rates (2, 1, or 0.5 ml.kg(-1).mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016